Static and ELF sources - MRI, power lines, etc

Rüdiger Matthes Federal Office for Radiation Protection Germany

Characterising sources / exposures

- Electric field strength V m⁻¹; magnetic field strength A m⁻¹; magnetic flux density T; frequency Hz
- > Fields are vector quantities (polarisation)
- > Fields may have a complex time course (harmonics, transients)
- Fields decline with distance to the source
- Fields depend on actual operation conditions of the source
- Fields from different sources sum up in a complex way
- Fields depend on geometrical arrangements/design (e.g. power lines)
- > Fields can be disturbed by the environment (especially E-fields)

Natural sources

Nature/origin	Frequency (Hz)	Amplitude (µT)	Comment
Regular solar and lunar	10 ⁻⁵	0.03-0.05	Increases in energy during summer and
variations		0.005-0.000	towards the equator
Irregular disturbances, e.g. magnetic storms	Wide range	0.8 – 2.4	27 day period (sun rotation)
Geomagnetic pulsations	0,002 - 5	2•10⁻⁵ - 8•10 ⁻²	For moderate activities at mid latitudes
Cavity resonances	5 - 50	2•10 ⁻⁵ - 5•10 ⁻⁵	Schumann resonance / lightning
Atmospherics	1-2 kHz	5• 10 ⁻⁵	Lightning discharges, energy peak 100-200 Hz

Man made sources Static electric fields

Charge separation as result of friction
Use of DC electric power

Walking on carpet	10 - 500 kV m ⁻¹	near the body		
VDU	100 – 300 kV m ⁻¹	5 cm from screen		
Treatment of plastics	several hundred kV m ⁻¹	near the body		
HVDC line (500 kV)	20 kV m ⁻¹	below; 2 kV m ⁻¹ in 400m		
Electric train systems				
600 V systems	30 V m ⁻¹	5m from line		
1 – 6 kV systems	300 V m ⁻¹	inside train		

* Magnetic blankets up to 50 mT at surface

Exposed:

- > General public exposure \rightarrow high but only local (e.g. hands)
- \succ Occupational exposure \rightarrow depending on the process
 - Medical \rightarrow high, local (anywhere inside the body)

Man made sources Static magnetic fields

	Industry		Transport		Energy distribution	
General public	(hobby)	few mT	Maglev Trains Tram	0,05 – 1000 mT 0,1 – 1 mT 0,01 – 0,4 mT	few tens of µT	
Occupational	Aluminium Chlor-alkali Welding Heavy	< 60 mT < 20 mT < 5 mT < 0,2 mT	0,1 – 15	5 mT	50 mT	

ELF sources

electric power distribution

ELF sources

electric power distribution

Source	Typical electric field strength (Vm ⁻¹)	Comment
Overhead power lines	1 000 – 10 000	High exposure only outdoors below the line
	up to 30 000	Occupational (e.g. climbing a tower)
Underground cables	0	Usually screened
Substations	~ 0	Usually housed or fenced
House wiring	< 100	On average; very inhomogeneous
Outlet	700	On surface, 60V/m in 10 cm
Electro cable (2wire)	40	On surface of isolation

	ELF sour electric power dis	'CES stribution
Source	Magnetic flux density (µT)	Comment
UK overhead tra	nsmission line	
400 kV (2 kA)	40 (8)	beneath line (25 m lateral displacement)
275 kV (1 kA)	22 (4)	
overhead distrib	oution lines	
132 – 11 kV	7	
415 V	1	
US overhead tra	nsmission line	
500 kV	18,3 (2,7)	beneath line (25 m lateral displacement)
230 kV	11,8 (1,5)	
115 kV	6,3 (0,4)	
Substation		
275 and 400 kV	10	at perimeter fence
11 kV	1,6	

	ELF sources electric power distribution				
Voltage	Geometry of underground cable system	Typical magnetic flux densities 1 m above ground (µT)			
		0 m	5 m	10 m	20 m
400 / 275 kV	0.5 m spacing;0.9 m depth	96	13	3.6	1
132 kV	0.3 m spacing;1 m depth	9.6	1.3	0.36	0.1
132 kV	1 m depth	5	1.8	0.94	0.47
33 kV	0.5 m depth	1	0.29	0.15	0.07
400 V	0.5 m depth	0.5	0.14	0.07	0.04
depth spacing depth b b c c c c c c c c c c c c c			he Elektrizitätswirtschafts-AG)		

	E	ELF sources transport	450
Suburban train UK 100 Hz	up to 1 mT 16 – 64 μT 16 – 48 μT	floor level passenger on platform	400
Mainline train	up to 15 mT Up to 2,5 mT < 50 μT	close to engine parts equipment car passenger coaches	i 300 - 10 250 - 200 -
Long distance train, Finland underground	0.3 – 290 μT 10 – 6000 μT up to 20 μT	passengers Close to engine parts drivers cabin	to 100 - 50
Local city line	tens of μT	on platform	0 -20 -15 -10 -5 0 5 10 15 Entfernung zur Gleistrasse in m Magnetic field close to rails for a German long
	00 1200 1400 1600 180 ms]	$ \begin{array}{c} 0,7\\ 0,6\\ 0,5\\ 0,5\\ 0,1\\ 0\\ 0 & 2000 \end{array} $	distance train.

ELF sources

miscellaneous

Source	Magnetic flux density (µT)	Comment
Petrol engine devices	up to a few hundred	at operator's position
Mobile phones	50	at 1 cm
Cars	0.02 – 4 13	different locations peak
Tires	500 2	close to the tire inside car
EAS inside gate	146	73 Hz; EM; 31.5 cm
	93	230 Hz; EM; 42 cm
Under floor heating	a few – a few hundred	depending on design
Induction hobs	a few	30 cm; up to 40 µT in 1 cm
		20-100 kHz

ELF sources exposure

I general exposure result from use of electricity (50/60 Hz, etc.) but may contain harmonics, transients and other frequencies (occupational)

Average electric fields in homes:

 $\approx 10 \text{ Vm}^{-1}$ Local peak up to 1000 Vm⁻¹
Average magnetic fields in homes (geom. mean): Europe 0,025 - 0,07 µT USA 0,055 - 0,11 µT local peak values several hundred µT
Average magnetic fields at workplaces depend strongly on the occupation electricians $\approx 0,4 - 0,6 \mu T$ train drivers $\approx 3 \mu T$ Local peak values up to approx. 10 mT

Summary

- > The dominant sources of exposure are man made.
- Static and ELF sources are associated with the generation, distribution and use of electricity.
- Since the use of electricity is an integral part of our modern lifestyle, powerfrequency fields are ubiquitous in our environment.
- > Special sources, in some workplaces and in medicine, use other frequencies
- Instantaneous magnetic-field values (close to sources) can be orders of magnitude higher than average values.
- > Only few data exist on average residential exposure to electric fields.
- Average residential exposure to power-frequency magnetic fields does not vary dramatically across the world.
- The average exposure to magnetic fields in the workplace is job specific and has been found to be higher in "electrical" than in other occupations.

