Childhood Leukemia near British nuclear installations:

methodological issues and recent results

John Bithell

Childhood Cancer Research Group 57 Woodstock Road, Oxford OX2 6HJ

email: bithell@stats.ox.ac.uk

© John F. Bithell. Not for publication without reference to the author

Acknowledgements

- Colleagues at the Childhood Cancer Research Group, especially:
 - Mike Murphy, Gerald Draper,
 - Tim Vincent, Mary Kroll
 - Tom Keegan, Gerry Kendall
 - Richard Wakeford

Summary

- A brief history
- COMARE 10
- Methodological issues
- Latest German study
- British data re-analysed

Conclusions

Childhood leukaemia near nuclear installations: A Brief History

 Much interest since TV programme, November 1983

Focussed on Sellafield (Windscale), Cumberland

- Government immediately set up Black Advisory Group, 1983
- Black Report, 1984
 - Final recommendation → Setting up of COMARE, 1985

(Committee on Medical Aspects of Radiation in the Environment)

 Studies of individual British installations followed Sizewell, Hinkley Point, Dounreay, and others

Childhood leukaemia near nuclear installations: A Brief History – 2

- Need for systematic study
- Early studies (Baron, 1984 and others) were mainly based on mortality
- Nationwide study of all installations sponsored by the Department of Health and published as COMARE 10, 2005

COMARE 10: Scope of study

- Update of earlier analysis published in 1994 in BMJ
- Data from:
 - National Register of Children's Tumours (Childhood Cancer Research Group, Oxford)
- All British children registered 1969-93:
 - Ages 0-14+
 - All Leukaemia + Non-Hodgkin Lymphoma (LNHL)
 - All other malignant tumours
- 28 nuclear installations analysed separately:
 - 13 Electricity generating (power) stations
 - 15 Non-generating stations:
 - Research
 - Commercial
 - Military
- Study design: case counts in defined areas

COMARE 10: Areal data

- Data for around 10,000 census wards in England & Wales (and equivalent areas in Scotland)
- On average a ward has around 1,000 children under 15
- Expectations calculated using:
 - Poisson regression relating number of cases in each ward to:
 - Numbers of children at risk estimated from censuses
 - Average socio-economic status of population in each ward
 - Geographical region (ten for whole country)
 - Expectations are then the fitted values in this regression
- Method is equivalent to internal standardisation for factors fitted

COMARE 10: Statistical methods

- Risk Models found to be unstable with small numbers
- Principal method of analysis:
 - To use non-parametric tests based on distance or distance rank
- Best test depends on:
 - Risk function (not known)
 - Geographical distribution of population (known)

COMARE 10: Statistical methods - 2

- For COMARE 10, best test for each site chosen from:
 - Set of five currently discussed in literature, using:
 - Average power over a set of 75 risk functions:
 - 5 functional forms
 - 3 different "half-lives" (distances)
 - 5 different overall risk levels chosen to give a range of powers
- Best test was nearly always:
 - LRS distance test or (Very similar) LRS root rank test
- Tests applied to wards in 25 km circles

The LRS tests

- The LRS (Linear Risk Score) distance test
 - Computes score for each case as 1/distance
 - Sums scores over all cases
 - It is most powerful against corresponding alternative
 - AND pretty good against a wide range of others
- Testing by simulation or using CLT (moments easily available)
- For COMARE 10, used unconditional version:
 - Numbers of cases randomly determined (not fixed)
 - Appropriate for trusted expectations

COMARE 10: Results

- Negative for generating stations:
 - No significant results for LRS test
 - No significantly raised Incidence Ratios
- Conclusion: Study provided no evidence of any raised risk of childhood leukaemia (or other tumours) near nuclear power (generating) stations
- For non-generating stations, the picture is more complicated – see Report:
 - Committee on Medical Aspects of Radiation in the Environment (COMARE) (2005). Tenth Report. The incidence of childhood cancer around nuclear installations in Great Britain. HMSO, London.
- Or on web:

http://www.comare.org.uk/documents/COMARE10thReport.pdf

Latest German study

Peter Kaatsch, Claudia Spix and colleagues at The German Childhood Cancer Registry, Mainz

- Papers in:
 - Int. J. Cancer: 1220, 721-726 (2008)
 - Europ J. Cancer **44**, 2, 275 284 (2008)
- Included children registered 1980-2003 (593 leukaemias)
- Case-control study (1:3) of children < 5 yrs

Latest German study - Results

- Results positive for leukaemia, but
 - at much closer distances than 25km
- Principal statistical method of analysis:
 - Conditional logistic regression on 1/distance
- Standardised Incidence Ratios at 5 and 10 km also significant:

Distance	Odds ratio	Lower 90% CL	No. cases
Within 5 km	2.19	1.51	37
Within 10km	1.33	1.06	95

British data re-analysed

- In the light of the German study, we looked again at the British data for 13 power stations
- Considered:
 - Age group (under 5 yrs)
 - Slightly differently defined tumour group (excluded NHL)
 - Different analytical methods (Primary method: Poisson regression on 1/distance)
 - Risk nearer to power station (looked at 5, 10 km incidence)
- Extended time range: 1969 2004
- No "ecological" adjustment
- Wards within 50 km of any power station selected

Poisson regression - model

Model:

$$Y_i \square \text{Poisson}[e_i \times \exp(\mu + \beta/x_i)]$$

where:

- $-Y_i$ = observed number of cases in ward i
- $-e_i$ = expected number of cases in ward *i*
- $-x_i$ = distance of ward *i* from nearest power station
- -3714 wards; 2149 cases

Poisson regression - results

 Carried out for varying radii in case effect was masked in a big circle

Circle radius	β	s.e.(β)	P-value	Deviance reduction	Residual	d.f.
(km)				(1 d.f.)	Deviance	
5	-1.447	2.94	0.69	0.26	29.52	32
10	1.644	1.41	0.12	1.23	126.14	143
25	0.016	0.94	0.49	0.0003	799.14	932
50	0.362	0.71	0.30	.255	3353.48	3711

 Results clearly non-significant, even for 5 km circle

Incidence ratios

Circle radius	Observed	Expected	Incidence	95% CL
(km)			Ratio	
5	20	14.74	1.36	0.83:2.10
10	66	70.93	0.93	0.72:1.18

 Although IR > 1 within 5 km, results not statistically significant

Discussion

- There is no evidence from an areal analysis of British data of a raised risk of leukaemia in children < 5 years close to nuclear power (generating) stations
- Reasons for the discrepancy from German study are obscure:
 - Possibly genuinely higher risk for reasons unknown
 - An artefact resulting from the control selection process in German study (unlikely because of negative results for other tumours)
 - Confounding factors acting differentially between the two countries
 - Lower power of areal study

Or is it...?

Positions
Of 13
Nuclear
Power
Stations
in Great
Britain