Genetic Susceptibility to Childhood Leukemia

ICNIRP/WHO/BfS International Workshop on Risk Factors for Childhood Leukemia 5 May, 2008

Anand Chokkalingam, Ph.D.
School of Public Health,
University of California, Berkeley
anandc@berkeley.edu

Outline

- Background
- Review from literature
- Northern California Childhood
 Leukemia Study (NCCLS) experience
- Challenges
- Future directions

Genetic susceptibility

Review

NCCLS

Challenge

Future Directions

- Q: What is genetic susceptibility?
- A: Heritable factors that increase risk of a given disease
- Usually one or more genes, or gene variations
- May work in concert with
 - Other genetic factors, AND/OR
 - Environmental and lifestyle factors
- Degree of involvement of other factors depends on penetrance

Review

NCCLS

Challenge

Future Directions

Penetrance

- Penetrance
 - High: rare, but high risk (e.g., BRCA1, RR~5)
 - Major part of short causal pathway to disease

- Low: common, but low risk (RRs of ~1.3-1.8)
 - Minor part of long causal pathway to disease

 Low-penetrance genetic factors likely to comprise the bulk of inherited cancer risk

Review

NCCLS

Challenge

Future Directions

Rationale for genetic susceptibility to CL

- Early age of onset
- Risk in twins
 - Mostly intraplacental metastasis, not highly penetrant risk allele
 - Suggests low penetrance susceptibility alleles

Review

Review

NCCLS

Challenge ទ

Future Directions

Candidate pathways in published reports

- Folate metabolism
- Xenobiotic (exogenous chemical) transport and metabolism
- Immune function
- DNA repair

Primary reports of gene main effects

Backgrou nd

Review

NCCLS

Challenge

Future Directions

Primary reports of gene main effects

Backgrou nd

Review

NCCLS

Challenge

Future Directions

Folate metabolism & ALL

Review

NCCLS

Challenge

Future
Directions

- Folate
 - Essential micronutrient, modulates balance between accuracy of DNA synthesis and DNA methylation
 - Deficiency can induce chromosomal damage and fragile chromosomal sites -> carcinogenesis
 - Maternal supplementation during pregnancy may reduce risk
- MTHFR, 2 loss-of-function variants: 14 reports

677C>T: null effect or modest risk reduction

Review

NCCLS

Challenge

Future Directions

Xenobiotic metabolism & ALL

- To do harm, exogenous chemicals must
 - enter cells
 - Membrane transporters (e.g., MDR1)
 - be metabolized into harmful species
 - Phase 1, bioactivation enzymes (e.g., CYPs)
 - Phase 2, detoxification enzymes (e.g., GSTs, NQO1)
- Transporters
 - MDR1: 4 reports
 - 3435C>T: null risk
- Phase 1, bioactivation
 - CYP1A1: 7 repots
 - 6235T>C: inconsistent

Review

NCCLS

Challenge

Future
Directions

Xenobiotic metabolism & ALL

- Phase 2, detoxification
 - GSTM1 (detoxifies PAHs): 13 reports
 - deletion: null to modestly increased risk
 - GSTT1 (detoxifies expoxides and halomethanes): 13 reports
 - deletion: null risk
 - GSTP1: 7 reports
 - I105V: null risk
 - NQO1 (anti-oxidant, detoxifies quinones): 7 reports
 - 609C>T: null risk
 - 465C>T: null risk (2 reports)

Review

NCCLS

Challenge

Future Directions

Review

NCCLS

Challenge

Future Directions

Evaluating the evidence

- HuGENet <u>Human Genome Epidemiology Network</u>
- HuGENet Encyclopedia: synopsis of evidence for genetic associations of complex disease
- CL as one of several prototype encyclopedia entries
- Venice meeting (2006): to develop criteria for rapid evaluation of evidence to facilitate encyclopedia effort
 - 3 criteria:
 - Amount of evidence
 - Replication
 - Protection from bias
 - Letter grades (A, B, C) for each AAA is ideal

Published by Oxford University Press on behalf of the International Epidemiological Association © The Author 2007: all rights reserved.

International Journal of Epidemiology 2007;1-11 doi:10.1093/iie/dvm159

Assessment of cumulative evidence on genetic associations: interim guidelines

John P A Ioannidis,¹⁻³* Paolo Boffetta,⁴ Julian Little,⁵ Thomas R O'Brien,⁶ Andre G Uitterlinden,⁷ Paolo Vineis,⁸ David J Balding,⁸ Anand Chokkalingam,⁹ Siobhan M Dolan,¹⁰ W Dana Flanders,¹¹ Julian P T Higgins,¹² Mark I McCarthy,^{13,14} David H McDermott,¹⁵ Grier P Page,¹⁶ Timothy R Rebbeck,¹⁷ Daniela Seminara¹⁸ and Muin J Khoury¹⁹

Venice criteria evaluation for ALL

Pilot Results

- Result of preliminary review
 - None have reached A status in any criterion
 - Only MTHFR and GSTM1 rank BBB
 - All else have a C in at least one criterion
- Evaluation of criteria in progress
- Next steps:
 - Refine criteria
 - Develop systems for
 - Consistent assignment and adjudication of grading
 - Updating as new evidence is published

Background nd

Summary

Review

NCCLS

Challenge

Future Directions

- Few genes have been studied to date for ALL, even fewer for AML
- Many high-probability candidates remain unexamined or unreplicated
- Entire candidate pathways with very strong biological plausibility remain poorly studied (e.g., immune function, DNA repair)
- Reports to date do not ensure good coverage of variation within a gene

Review

NCCLS

Challenge

Future
Directions

HapMap Project Publicly available SNP data

Data on linkage between SNPs in different populations

Review

NCCLS

Challenge

Future
Directions

Haplotype-based analysis

- Uses HapMap and similar data
- Permits:
 - Maximal coverage of variation within genes

```
Chris
Genotyped SHPs
```


Review

NCCLS

Challenge

Future
Directions

Haplotype-based analysis

Block 1

- Uses HapMap and similar data
- Permits:
 - Maximal coverage of genes

NCCLS experience

Review

NCCLS

Challenge

Future Directions

Northern California Childhood Leukemia Study 1995-present

- Population-based case-control study
- Incident cases
 ascertained from 9
 pediatric hospitals in N. & C. California
- Controls <u>individually</u>

 <u>matched</u> (date of birth, san
 sex, Hispanic status,
 and maternal race)
- 42% Hispanic

Review

NCCLS

Challenge

Future Directions

NCCLS Biospecimen collection

Review

NCCLS

Challenge

Future Directions

Background nd

Large-scale Genotyping

Review

NCCLS

Challenge

Future Directions

- Objective: to comprehensively examine ~200 candidate genes in subset of available children (464 cases, 464 controls)
- Custom Illumina 1536-plex
 - 183 genes
 - Haplotype tagging SNPs
 - Literature SNPs
 - Ancestry Informative Mark
 - Adjust for genetic ancestry

Candidate Pathways

Review

NCCLS

Challenge

Future Directions

NCCLS panel coverage

Review

NCCLS

Challenge

Future Directions

Review

NCCLS

Challenge

Future Directions

NCCLS genotyping Current status

- Data available Feb 2008
- Analyses ongoing

Challenges to genetic susceptibility research in childhood leukemia

Statistical power and sample size issues

Maternal genes

Replication

Publication Bias

Review

NCCLS

Challenge S

Future Directions

Statistical power

29

Review

NCCLS

Challenge s

Future Directions

Sample size

- Sample sizes limited by
 - Low incidence
 - 4.5/100,00 person-years
 - Disease heterogeneity
 - Subtype groups
 - "Lumping vs. splitting"
 - Availability of high-quality DNA
- Published genetic studies typically 100-300 cases
 - Larger studies expected

Background nd

Review

NCCLS

Challenge s

Future Directions

Interactions

- Small effect sizes (OR~1.2-1.5) point to effects of GxE interactions
- Critical to understanding susceptibility
- Requires
 - High-quality exposure data needed
 - Even larger sample sizes for sufficient power

Maternal genes

Review

NCCLS

Challenge s

Future Directions

Other major challenges

Review

NCCLS

Challenge s

Future Directions

- Replication of results
 - Multiple studies
 - Multiple populations
- Publication bias
 - When null results are not presented or published

Future directions

CLIC

Review

NCCLS

Challenge

Future Directions

- Childhood Leukemia International Consortium
 - www.clic.berkeley.edu
 - To date: 14 case-control studies in 10 countries
 - Over 9,000 cases
- Purpose
 - Replication of findings
 - Coordinated publication (address publication bias)
- Pleastaquebling (improve statistical power)

GWAS

Review

NCCLS

Challenge

Future Directions

- Genome-Wide Association Studies
 - Allows exploration of genome beyond candidate genes
 - 300K-1M variants across the genome
- Issues
 - Sample size
 - Replication strategy
 - Technical requirements
 - DNA quality (unamplified, genomic DNA)
 - DNA quantity (1microgram)
 - Cost

Review

NCCLS

Challenge

Future Directions

GWAS:Tiered replication approach

300K-1M SNPs

Acknowledgments

- UCB
 - Patricia Buffler
 - Catherine Metayer
 - Kevin Urayama
 - Ghislaine Scelo
 - Jeffrey Chang
 - Neela Guha
 - Melinda Aldrich
 - Lisa Barcellos

- UCSF
 - Joe Wiemels
 - John Wiencke
 - Helen Hansen
- CDC
 - Muin Khoury
- NCI
 - Stephen Chanock
- UKCCS
 - Malcolm Taylor

