Childhood Leukaemia, Intrauterine Growth and Diet

Nick de Klerk

Telethon Institute for Child Health Research & Centre for Child Health Research,
University of Western Australia

Acknowledgments

- Liz Milne
- AUS-ALL co-investigators, including Bruce Armstrong, Judy Thompson and Carol Bower
- Eve Blair, Crystal Laurvick
- Anna Callan
- Funding from Australian NHMRC, Cancer Council of Western Australia

Age-standardized incidence of ALL in Western Australia and Australia. (0-14)

Birth weight and risk of CL

- Results of studies of birth weight
 - ALL mostly positive associations
 - AML less consistent
- Differences in study design, case definition, age at diagnosis, source of data etc.
- Different cut-offs for 'high birth weight' (eg 3500g, 3800g, 4000g)
- Not all studies have taken account of gestational age

Appropriate birthweight

- OBW = expected birth weight estimated from gestational age, gender, birth order, and maternal height
- Caucasian, singletons, no SB, NND, BD
- No maternal smoking, vascular disease, diabetes, TORCH infections
- POBW measure of appropriateness of IU growth =Observed BWT / Optimal BWT (OBW)

Blair et al. 'Optimal fetal growth for the Caucasian singleton & assessment of appropriateness of fetal growth: an analysis of a total population perinatal database'. BMC Pediatrics 2005;5:13

Data - WA Data Linkage System

POBW & risk of CL

	n cases	HR*	95% CI
AML	36	0.94	0.67, 1.31
ALL	243	1.21	1.07, 1.36
ALL: 0-4yrs	144	1.25	1.07, 1.47
ALL: 5-14 yrs	99	1.14	0.94, 1.38

^{*}per 1SD increase in POBW

Milne, E et al. (2007). Fetal Growth and Acute Childhood Leukemia: Looking Beyond Birth Weight. *American Journal of Epidemiology*, 166, 151-159.

POBW and risk of ALL by birthweight

	n	HR*	95% CI
	cases		
ALL (0-4yrs)	144	1.25	1.07, 1.47
BWT <4000g	127	1.38	1.13, 1.68
BWT <3800g	110	1.40	1.12, 1.74
BWT <3500g	72	1.43	1.09, 1.88

^{*}per 1SD increase in POBW

Australian Study of Causes of Acute Lymphoblastic Leukaemia in Children

1. Folate effects

- Maternal folate supplementation (including dose) during pregnancy
- 2. Maternal dietary folate, B6, B12, fruit & veg, protein in pregnancy
- 3. MTHFR polymorphisms in mother and child
- 4. Interactions and within sub-types

2. Environmental, occupational, other diet.

- 1. Multiple risk factor analyses.
- 2. Candidate genes (c-c and trios).
- GXE interactions.
- 4. GWAS.
- 5. No EMF measurements

AUS-ALL: analysis of fetal growth

- 338 ALL cases and 803 controls born 1988-2006
- Multiples or children with congenital anomalies excluded
- Mother report: infant birth weight, GA, sex, birth order, maternal height
- Logistic regression: POBW z-scores, all ORs adjusted for gender, age, State, family income

Suggested growth factor pathway

- IGF-1 in cord blood associated with foetal growth: BWT, birth length, lean mass, fat mass, bone mass, & placental weight
- IGF-1 plays a role in normal haematopoiesis
- IGF-1 implicated in childhood ALL...
 - Receptors present on leukaemic lymphoblasts
 - Proliferative stress on pre-leukaemic cells in marrow and protects against apoptosis
 - Stimulates growth of leukaemic cells in vitro

Potential pathway

Diet and risk of cancer

- Long history of study of diet in relation to cancer risk
- WCRF and AICR report (2007): Food, Nutrition, Physical Activity, and the Prevention of Cancer
- Studies of diet and risk of CL have generally been inconclusive
- Need to specify who and when

Studies of diet and risk of ALL

Author	Who	Food	OR (95% CI)
Shu 1988	Mother	Cod liver oil (vits A and D), use for >1 yr	0.4 (0.2-0.9)
Sarasua & Savitz, 1994	Mother	Ham, bacon, sausage (HBS) H, B, S (no vit supps)	1.5 (0.7-3.0) 2.9 (1.1-7.9)
	Child	Hamburgers (1+/week) Lunch meats (no vit supps) H, B, S (no vit supps)	2.0 (0.9-4.6) 2.3 (0.7-7.5) 2.9 (0.9-8.9)
Ross 1996	Mother	Foods containing DNA-t-2 inhibitors	No association (infants)

Studies of diet and risk of ALL

Author	Who	Food	OR (95% CI)
Jensen	Mother	Fruits (esp. cantaloupe)	0.7 (0.5-1.0)
2004		Vegetables	0.5 (0.3-0.8)
		Protein sources	0.4 (0.2-0.9)
		Cured meats	0.7 (0.4-1.1)
		Fats, sweets, snacks	1.2 (0.7-2.1)
Petridou	Mother	Fruits	0.7 (0.6-0.9)
2005		Vegetables	0.8 (0.6-0.9)
		Fish & seafood	0.7 (0.6-0.9)
		Meat & meat products	1.2 (1.0-1.6)
	Sugars & syrup		1.3 (1.0-1.7)
		Total energy intake/day	1.3 (1.0-1.7)

Studies of diet and risk of AML

Author	Who	Food	OR (95% CI)
Shu 1988	Mother	Cod liver oil (vits A and D), use for >1 yr	0.3 (0.1-1.0)
Ross 1996	Mother	Foods containing DNA-t-2 inhibitors - Medium intake - High intake	(Infants) 9.8 (1.1-84.8) 10.2 (1.1-96.4)
Spector 2005	Mother	Foods containing DNA-t-2 inhibitors	(Infants) Weak +ve assoc in MLL+

Studies of diet and risk of ALL/AML

Author	Who	Food	OR (95% CI)
Peters 1994	Child	Hot dogs (12+/month)	9.5 (1.6-57.6)
Kwan 2004	Child <2yrs	Oranges/bananas Orange juice Vegetables Vitamins Hot dogs/lunch meat Beef/hamburger	0.5 (0.3-0.9) 0.5 (0.3-0.9) 0.6 (0.3-1.0) 0.9 (0.6-1.3) 1.6 (0.7-3.6) 1.6 (0.8-3.1)
Spector 2005	Mother	Fruit and vegetables	Modest inverse assoc with infant ALL/AML

Diet and CL: summary

Limited evidence

Foods that *may* increase risk:

- Processed/cured meats
- Those containing DNA t2 inhibitors
- High energy foods
- Foods that may reduce risk:
 - Fruit and vegetables (flavonoids, carotenoids, folate...)

Folate supplements

Study	Where	n cases	OR
Thompson 2001	W. Aust	83	0.4 (0.2-0.7)
Dockerty 2007	NZ	97	1.1 (0.5-2.7)

Multi-vitamins

Study	Where	n cases	OR
Wen, 2002	US	1842	0.7 (0.5-1.0)
Shaw, 2004	Quebec	789	1.0 (0.8-1.2)
Ross, 2005*DS	US	97	0.5 (0.3-1.9)
Schüz, 2007	Germany	650	0.8 (0.7-1.0)
Dockerty, 2007	NZ	97	0.8 (0.2-3.1)
Ross, 2005*DS	US	61 ^{AML}	0.9 (0.5-1.8)
Schüz, 2007	Germany	105 ^{AML}	1.1 (0.7-1.7)

Fits with 2-hit model

- Inadequate folate may cause 1st hit in utero through aberrant methylation or synthesis of DNA
- Inadequate folate may reduce foetus' ability to repair 1st hit caused by something else
- Other possibilities
- Some support for role of folate from genetic studies

Studies of MTHFR SNPs (ALL)

- 12 original studies (2001-2008)
 - 6/12 studies suggested a protective effect of C677T
 - 3/10 studies suggested a protective effect of A1298C
- 2 meta-analyses in 2006
 - contradictory findings, probably due to differences in inclusion criteria
 - Pereira et al (2006) (more inclusive):
 - 0.87 (0.72-1.06) for *C677T* variant
 - 0.80 (0.56-1.16) for A1298C variant
- SNP x Folate interactions: mixed results

Summary and conclusions

- Accelerated foetal growth seems important
- Roles of folate + folate-related genes, and diet overall, not clear, but promising
- Suggested pathways involving IGF-1 (and/or other growth factors) could include other dietary factors