# The KiKK-Study - results put into perspective

B. Grosche
Federal Office for Radiation Protection,
Germany



#### Basic references

- Spix, C., Schmiedel, S., Kaatsch, P., Schulze-Rath, R. & Blettner, M. (2008). Case-control study on childhood cancer in the vicinity of nuclear power plants in Germany 1980-2003. *Eur J Cancer*, 44, 275-284
- Kaatsch, P., Spix, C., Schulze-Rath, R., Schmiedel, S. & Blettner, M. (2008). Leukaemia in young children living in the vicinity of German nuclear power plants. *Int J Cancer*, **122**, 721-726



#### Background

- The German Childhood Cancer Register conducted a case-control study on childhood cancer near nuclear power plants in Germany
- this study was initiated and funded by BfS



### Hypothesis

H<sub>0</sub>: There is no correlation between the proximity of the place of residence to a NPP and the cancer risk among children below the age of 5. There is no negative trend of the risk with distance.

Secondary question: Can an elevated risk be observed within 5 km distance from the sites?



#### Study area

- vicinity of 16 nuclear sites in Germany with 21 NPPs
- study area of 42 districts
  - two next to the sites
     plus the next neighbour
     to the east
  - some overlap



Dr. B. Grosche, BfS-ICNIRP-WHO Workshop, 05/2008

| Verantwortung für Mensch und Umwelt |

- - -

(Spix et al., Eur J Cancer, 2008)

#### Cases and Controls

- all cases registered
  - with diagnosis 1980 2003 (GCCR started operation in 1980)
  - below 5 years of age at time of diagnosis
- population based controls, randomly selected from the registration offices
  - individually matched by age and gender
  - had to live in the same NPP area as the reference case at time of diagnosis
  - 1:3 matching



### Diagnostic groups

- all cancers
- leukaemias
  - ALL
  - AML
- CNS cancers
- all embryonic cancers but medulloblastoma



# Results – regression analysis leukaemia





## Results – regression analysis

| Diagnostic<br>group | ß    | lower 95%-Ci | cases | controls |
|---------------------|------|--------------|-------|----------|
| all leukaemias      | 1.75 | 0.65         | 593   | 1,766    |
| ALL                 | 1.63 | 0.39         | 512   | 1,523    |
| ANLL                | 1.99 | -0.41        | 75    | 255      |

(Kaatsch et al., Int J Cancer, 2008)



#### Results – categorial analysis

| Diagnostic<br>group | distance        | OR   | lower<br>95%-CI | cases |
|---------------------|-----------------|------|-----------------|-------|
| all leukaemias      | ≤5km vs. >5km   | 2.19 | 1.51            | 37    |
|                     | ≤10km vs. >10km | 1.33 | 1.06            | 95    |
| ALL                 | ≤5km vs. >5km   | 1.98 | 1.33            | 30    |
|                     | ≤10km vs. >10km | 1.34 | 1.05            | 84    |
| ANLL                | ≤5km vs. >5km   | 3.88 | 1.47            | 7     |
|                     | ≤10km vs. >10km | 1.30 | 0.66            | 10    |

(Kaatsch et al., Int J Cancer, 2008)



#### all leukaemias:

Results from regression and categorial analyses by circles / rings



(data taken from Kaatsch et al., Int J Cancer, 2008,

## Odds Ratios, Germany, 5 km circles, by time period

| Study<br>period | case-control study OR and 1-tailed lower 95% CL |
|-----------------|-------------------------------------------------|
| 1980-1990       | 3.00 (1.54)                                     |
| 1991-1995       | 2.10 (1.04)                                     |
| 1996-2003       | 1.78 (0.99)                                     |

(acc. to: Kaatsch et al., Int J Cancer, 2008)



#### Discussion

- Effect of confounders in Part 2 of the study
- Comparison with Gardner study
- Decreasing ORs over time
- Power lines as confounders?
- Comparison with previous ecological studies



#### Part 2 of the study

(Kaatsch et al., Report, 2007)

Telephone interviews for a subset of cases and controls (1993 – 2003)

for leukaemias:

ß = 0.44, lower 95% CI = -1.86 (237 cases, 463 controls) but:

self selection – among cases the response within 5 km circle is lower than outside; same effect for controls, but less pronounced

as defined in advance, confounders found in Part 2 must not be used as an explanation for the results of Part 1 (estimate for Part 2 outside 90% CI for that derived one from Part 1)



### Part 2 – Change in estimate

#### Confounders:

- SES,
- radiation exposure,
- further risk factors mentioned in the literature,
- child's immunological situation,
- others

based on 251 leukaemia cases and 487 controls

→ no change in estimate

(Kaatsch et al., Report, 2007)



#### A result from the Gardner study

(Gardner et al., BMJ; 1990)

| Distance from the site | OR   | (OR               | 95% CI      |
|------------------------|------|-------------------|-------------|
|                        |      | with ref.: 30+km) |             |
| ≤ 5 km                 | 1    | (5.88)            |             |
| 5 - ≤ 10 km            | 0.35 | (1.35)            | [0.08;1.62] |
| 10 - ≤ 15 km           | 0.21 | (1.24)            | [0.05;0.92] |
| 15 - ≤ 20km            | 0.22 | (1.29)            | [0.04;1.22] |
| 20 - ≤ 25km            | 0.22 | (1.29)            | [0.03;1.59] |
| 25 - ≤ 30 km           | 0.14 | (0.82)            | [0.02;0.19] |
| 30+ km                 | 0.17 | (1)               | [0.02;1.18] |

Dr. B. Grosche, BfS-ICNIRP-WHO Workshop, 05/2008



#### Decreasing odds ratios over time

| Study period | case-control study OR and 1-tailed lower 95% CL |  |
|--------------|-------------------------------------------------|--|
| 1980-1990    | 3.00 (1.54)                                     |  |
| 1991-1995    | 2.10 (1.04)                                     |  |
| 1996-2003    | 1.78 (0.99)                                     |  |

(acc. to: Kaatsch et al., Int J Cancer, 2008)



#### Decreasing odds ratios over time

 Is there an agent active of which the prevalence decreases over time?

 But: No change in leukaemia mortality in small areas near nuclear installations in England and Wales before and after start up

(Baron, Br J Cancer, 1984)



#### Power lines as confounder?

- A large number of studies reported on a correlation between exposure to EMF and childhood leukaemia, namely in young children
- But: the power lines do not cover the entire study area, but only corridors in less populated parts of it



# Ecological studies, Germany, 5 km circles

| Study period | ecological study | case-control study           |
|--------------|------------------|------------------------------|
|              | RR and 95% CI    | OR and 1-tailed lower 95% CL |
| 1980-1990    | 3.01 [1.25;10.3] | 3.00 (1.54)                  |
| 1991-1995    | 1.39 [0.69;2.57] | 2.10 (1.04)                  |
| 1996-2003    |                  | 1.78 (0.99)                  |
| 1980-1995    | 1.49 [0.98;2.20] | 2.53 (1.57)                  |
| 1980-2003    |                  | 2.19 (1.51)                  |

(acc. to: Kaatsch et al., Int J Cancer, 2008)



### Ecological studies

- Assume there is no ecological fallacy
  - studies showed elevated risks amongst youngest age group and closest vicinity
  - no effect for all children (0-14)
    - review by Laurier
    - COMARE results
- Elevated risk amongst 0-4 years old would mean a lower risk amongst the 5-14 years old



#### Lower risk amongst 5-14 years old

- Does that mean, that a yet undefined agent causes an earlier onset of the disease close to the sites?
- If so, this would explain the absence of additional cases for all children.

1980-1995 RR = 1.31 (Kaletsch, Report, 1997)

| age | 0-4   | 5-9  | 10-14 |
|-----|-------|------|-------|
| RR  | 2.87* | 1.15 | 0.52  |



### Ecological studies II

- Potential sites
  - limited evidence due to limited number of studies, actually only one looked at 0-4 years old
  - but
    - highest risk amongst the youngest age group and closest vicinity
- Is there something special about the locations?



# Observations near potential sites, youngest age group, 5 km vicinity

| Reference         | study area      | age group             | study period           | relative risk |
|-------------------|-----------------|-----------------------|------------------------|---------------|
| Keller,<br>1992   | West<br>Germany | incidence,<br>age ≤ 4 | 1980-1991              | 4.16*         |
| Kaletsch,<br>1997 | West<br>Germany | incidence,<br>age ≤ 4 | 1991-1995<br>1980-1995 | 1.52<br>3.82  |

(Laurier et al., 2002, Acta Oncol.)



#### Knowledge on radiation effects

- current risk estimates indicate that the radiation exposure from NPPs is too low by at least a factor of 1,000 to explain the findings
- but little is known about the risk
  - at exposure during pregnancy and early childhood

#### <u>and</u>

disease onset in early childhood



#### Possible explanations

- Radiation at low exposures with a high risk for young ages?
- Combined effects with radiation:
  - Which factors are involved?
  - What is the total risk ?
  - What is the contribution of radiation ?
- Which potential risk factors are characterized by the observed distance dependence from a site?



## Conclusion (1)

"It is, therefore, necessary to consider carefully whether each of the positive results may be due to chance, or to socio-economic / environmental differences, or to the direct presence of the installations."

(Forman et al., Nature, 1987)



## Conclusion (2)

- KiKK study points into direction of "Presence of the installations"
- Effect only seen for leukaemias
- But no explanation for a causal relation between a risk factor and the observed risk is possible

