

Host, family and community proxies for infections associated with leukaemia

Graham Law

Centre for Epidemiology and Biostatistics

Infections and leukaemia

- Long history linking childhood leukaemia with infection, for example Kellett (1937)
- No specific infection discovered
- Proxies usually used why?
 - Infectious disease difficult to measure
 - Biomarker for candidate infection, identification of specific pathogen, time window of exposure, sample availability
 - General pattern has no biomarker

Causal pathway for infections

Proxy measures for infection

- Age distribution of incidence
- Birth order and older siblings
- Breastfeeding
- Day care during infancy
- Genetic variation in immune response (e.g. TLR)
- Increase in incidence
- Parents' occupation
- Population mixing
- Seasonal variation
- Spatial and space-time clustering of cases

Heath's cluster investigation in USA

- Heath (2005) published a report of childhood leukaemia clusters in USA
 - **1961-1977**
 - 50 clusters identified
 - 8 clusters "linked" with infections
- 7/8 cases/siblings attended same church/school
- 5/8 rapid population growth
- 3/8 unusual community infection patterns
- 1/8 three Burkitt lymphomas in neighbourhood

Clusters of leukaemia

- A cluster is "suggestive" of an infectious aetiology (McNally and Eden, 2004)
- For a cluster of leukaemia to be used to identify the cause (Rothman, 1990)
 - The cause must also cluster
 - The induction period must be short and constant
 - The cause must be rare
- Not necessarily an infection (McNally, 2008)
 - Endemic/common infection leads to homogeneity

Family: birth order

- A characteristics of the family circumstances
- Represents older siblings in the household

"High birth order may be taken as a surrogate for early exposure to infection from siblings."

McNally & Eden, 2004

Birth order and childhood leukaemia

Risk with increasing birth order	Leukaemia	ALL
Increased	2	4
No change	7	3
Decreased	1	2

- Studies 1997-2008
- 19 studies
- 1997-2004 from McNally & Eden 2004 and PubMed

Birth order/parity and infection

	Infection	Raises risk
Virus	HSV1	↑ younger siblings
	EBV	→ younger siblings
	RSV	↑ birth order x 2
Bacteria	H.pylori	↑ birth order x 2, ↑ siblings
Protozoa		↑ birth order
'General'	GP records	↓ birth order, → birth order

Community: population mixing

- Migration
 - Residential, permanent one-way
 - Commuting, daily two-way
- Proxy for
 - Movement of infections

Population mixing hypothesis

"Natural experiments"

Community: causal pathway for infections

Community: causal pathway for infections

Objective measures of migration

"Where did you live one year ago?"

- For all in-migrants for each area data on
 - Number and proportion of in-migrants
 - The origin of all in-migrants (down to Ward)
 - Age and sex of in-migrants by origin
- For each area we estimate
 - Proportion of in-migrants
 - Diversity in the origin of in-migrants
 - 'Childhood' (0-14) and 'All ages' (0+) separately

Proportion of total immigrants

Diversity of in-migrant origins

Diversity of migration at diagnosis - UKCCS

			ALL	0	ther tumours
Diversit	y of in-migr	ant origins			
All ages	Low Med High	1.37 1 0.88	(1.00-1.86) (-) (0.70-1.10)	1.04 1 1.07	(0.80-1.35) (-) (0.90-1.29)
0-14	Low Med High	1.37 1 1.04	(0.93-2.01) (-) (0.87-1.24)	0.97 1 1.09	(0.69-1.35) (-) (0.94-1.26)

Community characteristics and infection

Population density

- Represents the likelihood of a susceptible encountering an infected person
- Assessment may be subjective...
 - "Farm/Not farm"
 - Identifying "built-up areas" from maps
 - ...or may be objective
 - Population density
 - Persons per hectare
 - Rural < 1.5 pph
 - Urban >25.0 pph

Population density at diagnosis

		ALL		Other tumours
All ages Rural Suburban Urban	1.12 1.09 1	(0.93-1.35) (0.97-1.23) (-)	1.05 1.02 1	(0.91-1.21) (0.93-1.13) (-)
<i>0-14</i> Rural Suburban Urban	1.07 1.07 1	(0.88-1.29) (0.94-1.20) (-)	1.03 1.03 1	(0.90-1.19) (0.94-1.14) (-)

Population density at birth

		ALL		Other tumours
All ages Rural Suburban Urban	1.16 1.07 1	(0.95-1.41) (0.94-1.21) (-)	1.00 0.98 1	(0.86-1.16) (0.89-1.08) (-)
<i>0-14</i> Rural Suburban Urban	1.99 1.36 1	(1.24-3.20) (0.82-2.25) (-)	0.78 0.92 1	(0.61-1.00) (0.71-1.19) (-)

Moving between birth and diagnosis

	Diagnosis			
Birth	Rural	Suburban	Urban	
Rural	2.12	2.14	2.08	
Suburban	1.52	1.62	1.48	
Urban	-	1.41	1	

Proxy assessment: general infectious load

- Hospital Episode Data
 - April 2001-March 2002
 - Aged <15 years</p>
- Admissions for
 - Infection: intestinal, unspecified viral, acute respiratory, influenza and pneumonia
 - Non-infectious: superficial injury
- Admission counts for census wards from
 - West Midlands, England
 - Eastern England

Childhood residential migration

	Eastern region		West Midlands		Non-infectious	
	IRR	95% CI	IRR	95% CI	IRR	95% CI
Volume	1.02	0.92 - 1.13	0.88	0.78 - 0.98	1.31	1.11 – 1.55
Diversity	1.10	1.04 – 1.19	1.04	0.96 – 1.12	0.90	0.81 – 1.00
Distance	1.00	0.96 – 1.03	0.92	0.88 - 0.96	1.05	0.99 – 1.11

Commuting

	Eastern region		West Midlands		Non-infectious	
	IRR	95% CI	IRR	95% CI	IRR	95% CI
Volume	1.32	1.00 – 1.75	1.69	1.31 – 2.18	0.42	0.30 - 0.60
Diversity	0.86	0.80 - 0.92	0.99	0.90 – 1.10	0.82	0.71 – 0.94
Distance	0.82	0.77 - 0.87	0.84	0.78 - 0.90	1.01	0.92 – 1.12

Summary

- Commuting volume fairly consistent association
 - ↑ risk in areas with ↑ volume of commuters
 - adjusting for pop density removes significance
- Commuting distance demonstrated the most consistent association
 - ↓ risk in areas with ↑ median distance commuted
- Deprivation and population density are reliable proxies for the level of infectious disease

Specific infections

- Norfolk, England in 2002
- Saliva samples measured antibodies for
 - Varicella zoster virus
 - Epstein-Barr virus
- 616 children aged 1-4 years
- Fractional polynomial regression (in Stata)
- Examine risk of virus in association with host, family and community characteristics

Multivariable logistic regression

Significant odds ratios	VZV	EBV
Age	2.15	
Mother smoked year 1	2.31	
Father unemployed		3.62
Older children	2.23	
People	Non-linear	
Day care	0.40	1.58
Migration distance	1.01	

People and VZV

Summary

- Proxies for infection associated with childhood leukaemia
- Proxies are rarely tested for true reflection on infectious disease risk
- Proxy association with risk is not straightforward
 - Pathogen specific
 - Non-linear

Future directions

- Lessons learned
 - Selection bias, participation and 'adjustment'
 - Comparison diagnostic categories/diseases
- To pursue infections we need to
 - Measure infections more accurately
 - GP, infection diary, biomarkers for immune function?
 - Relative to radiation metrics/interpolation
 - Relate the infection measurement to proxies

Supplementary slides

Community: 'day care' or 'child care'

- Large meta-analysis from Uruyama and colleagues
- What does it mean?
- "However there is no evidence to suggest that mothers that stay at home and look after their children in the pre-school years are putting their children at an increased risk of developing leukaemia." (LRF.org.uk, 2008)

Day care and infections

- Review (Nesti and Goldbaum, 2007) found
- 2-3 times risk of infection
- No contradictory results
- Most commonly
- Upper and lower respiratory tract infections
- Otitis media
- Gastrointestinal system and liver
- CMV, VZV, Bacteria
- Skin e.g. Herpes simplex

Day care and infections

- Some reports of no association
- For example,
 - Gardner et al., 1984: Some notable lower rates (picornavirus, enterovirus)
 - Hedin et al., 2007: "...daycare infants are visiting a physician and treated with antibiotics in the same way as homecare infants." (after adjustment for asthma, perception and symptoms are taken into account)

Day care characteristics

- Independent of age, race, socioeconomic status
- Exploration of their environment with their mouths
- Absence of hygiene
- Faecal incontinence
- Immunity not fully acquired

- Larger number/density of children increases risk
- Flow of infection from day care to community

Results – demographic variables

	Eas	stern region	We	West Midlands		n-infectious
	IRR	95% CI	IRR	95% CI	IRR	95% CI
<i>Unadjusted</i> Deprivation	1.04	1.03 – 1.05	1.05	1.04 – 1.06	1.01	0.99 – 1.02
Pop Density Low	1.00		1.00		1.00	
Med	1.14	1.05 – 1.24	1.18	1.08 – 1.30	0.99	0.87 – 1.13
High	1.29	1.19 – 1.40	1.44	1.32 – 1.57	0.88	0.78 - 0.99
Adjusted						
Pop Density Low	1.00		1.00		1.00	
Med	1.10	1.01 – 1.19	1.10	1.00 – 1.20	0.95	0.83 - 1.08
High	1.06	0.97 – 1.17	1.15	1.04 – 1.28	0.76	0.66 – 0.89

Childhood residential migration

	Eastern region		Wes	West Midlands		n-infectious
	IRR	95% CI	IRR	95% CI	IRR	95% CI
Unadjusted						
Volume	1.08	0.97 – 1.20	0.79	0.70 - 0.89	1.28	1.08 – 1.50
Diversity	1.20	1.12 – 1.29	1.21	1.12 – 1.30	0.93	0.84 – 1.02
Distance	0.94	0.91 – 0.97	0.86	0.83 - 0.89	1.03	0.98 – 1.09
Adjusted						
Volume	1.02	0.92 – 1.13	0.88	0.78 - 0.98	1.31	1.11 – 1.55
Diversity	1.10	1.04 – 1.19	1.04	0.96 – 1.12	0.90	0.81 – 1.00
Distance	1.00	0.96 – 1.03	0.92	0.88 - 0.96	1.05	0.99 – 1.11

Causal pathway for infections

