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Disease mapping

Overview

• Geographic epidemiology

• Disease Clustering

• Global clustering: Random effects models

• Focused clustering: Ecological regression
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Goals of geographic epidemiology and disease mapping

• Identify high risk areas for further analytical studies, e.g stomach cancer
in Bavaria

• Disease surveillance, e.g. cancer registries

• Health care system evaluation, e.g. regional distribution of avoidable
death

• Cluster investigations, e.g Sellafield, Krümmel
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Cluster-Definition?

”Aggregation of relatively uncommon events or diseases in space and/or
time in amounts that are believed or perceived to be greater than could be
expected by chance”
(Last, A dictionary of epidemiology, 1995)
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Distinction

• ”Global clustering” Clustering in a large geographic area

– Methods: Small-area mapping and/or spatial statistics

• ”Disease clustering” due to Point Sources

– Methods: Ecological studies based on distance as surrogate measure
of exposure

– Potential danger. Selection bias
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Example: Childhood leukaemia in the GDR 1980-1989

Several Hypotheses are under discussion for childhood leukaemia. Among
these hypotheses is the concern that there is an excess risk in the vicinity
of nuclear power plants or installations.

An excess is likely to cause public concern.
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Figure 1: A putative cluster in the vicinity of Rossendorf, Der Spiegel (1996)6
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Investigation of this putative cluster

To avoid selection bias global clustering should be investigated before
investigating a point source!
Points to consider:

• Spatial resolution

• Data are mostly only available based on administrative units, which is
rarely appropriate

• A system like SAHSU as in the UK would be desirable

For the childhood leukaemia data only the resolution of ”Landkreise” is
available (Möhner et al, Atlas of Cancer incidence for the GDR)
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Traditional methods in disease mapping

Construction of percentile maps:

• Calculate the SMR = oi
Ei

or standardised rates for each region (oi are the

observed cases, Ei are the expected cases according to the standard)

• Classify the areas according to the percentiles of the SMR distribution

• Frequent choices: Quartiles and Quintiles
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Figure 2: Percentile map: Childhood leukaemia GDR 1980-89 9
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Problems:

• How to choose the number of categories?

• The approach is likely to reflect the heteroscedasticity of SMR’s or rates
due to different population size

• Example: SMR1 = 2
0.8 = 2.5, SMR2 = 20

8 = 2.5

• Now one case more: SMR1 = 3
0.8 = 3.75, SMR2 = 21

8 = 2.625

Areas with a small population tend to large relative risk (SMR) estimates!
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Traditional methods II: Statistical probability maps

Since the oi are count data frequently a Poisson distribution is assumed:

• Assume Oi ∼ Po(θEi)

• Pr(Oi = oi) = f(oi, θ, Ei) = e−(θEi)(θEi)
oi

oi!
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Map construction

Calculate P (Oi ≥ oi) or P (Oi ≤ oi) under the null hypothesis hypothesis

• θ = 1

• Or alternatively based on the Maximum-Likelihood Estimator θ̂ =
Pn

i=1 Oi
Pn

i=1 Ei
, (n is the number of areas).

• Classify the individual area according to these probabilities, e.g. SMR > 1
and significant!
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Figure 3: Statistical probability map: Childhood leukaemia GDR 1980-8913
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Problems

• Multiplicity: A large number of tests is performed thus the type I error
is inflated

• For a significance level of 0.05 by construction 2.5% of the areas will
have SMR’s significantly larger than one.

• Areas with a large population tend to significant results

• The assumption of a common Poisson parameter θ may be too strong:
Overdispersion occurs, this indicates heterogeneity
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Is the map at random?

When assessing whether a map is at random two phenomena need to be
distinguished:

• Heterogeneity: Different areas have different levels of disease risk.

– This may due to different levels of exposure

• Autocorrelation: Neighboring areas have similar levels of disease risk.
This occurs:

– In infectious diseases or if an infectious nature of the disease is present
– If similar patterns of exposure in neighboring areas are present
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Fixed effects models in geographic epidemiology

The assumption that the observed cases Oi follow a Poisson distribution
can be seen as a fixed effects model with:

Oi ∼ Poisson(µi)

log µi = β0 + log(Ei)

This is a Poisson regression model with an intercept only (common risk in
all areas).
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Testing for heterogeneity

Null hypothesis:

Ho : θ1 = θ2, . . . , θn versus

H1 : ∃θi 6= θj, i 6= j

χ2
Gail =

n
∑

i=1

(oi − θ̂Ei)
2

θ̂Ei

Reject : H0 : χ2
Gail > χ2

n−1,0.95
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Results for the childhood leukaemia data

Results were obtained with DismapWin (Schlattmnn, 1996)

Current map: c:\dismap\ddr87.bnd

Observed cases:OBS8089

Expected cases/ Person years:EXP8089

Gail statistic for heterogeneity:

value of test-statistic=207.627899 p-value=0.31 df= 218

18



Disease mapping

Overdispersion

If we have a fixed effects model with X ∼ Po(θ) then

• E(X) = θ

• V ar(X) = θ

• If the empirical variance of X is larger than the theoretical variance
overdispersion occurs

• This is an indication of heterogeneity

• Autocorrelation can also be a source of overdispersion
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Variance decomposition for overdispersed data

If there is overdispersion present the total variance of the observed
cases may be partioned in two sources of variance (Poisson variability and
heterogeneity variance τ2):

V ar(X) = θ + τ2

For SMR’s this leads to

V ar(O) = θE + τ2E2

τ2 =
V ar(O)

E2
− θ

E
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Random effects models in geographic epidemiology

Like in meta analysis we can develop a hierarchical model:

• First level: Oi ∼ Poisson(θiEi)

• Second level: θi ∼ P (λ, τ2)

That is the observed cases are distributed conditional on the parameter
θiEi and the parameters θi follow a distribution with expectation λ and
heterogeneity variance τ2.
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Random effects models in geographic epidemiology

If there is variability between areas, i.e. heterogeneity a random effects
model may be used.

Oi ∼ Poisson(µi)

log µi = β0 + log(Ei) + ui

ui ∼ P (λ, τ2)

This is an intercept only Poisson regression model with random effects. The
distribution P (λ, τ2) with expectation λ and heterogeneity variance τ 2 must
be specified. A common choice is the Γ distribution with scale parameter α

and shape parameter ν . (Clayton and Kaldor, 1987)
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Using empirical Bayes estimators

Calculation of empirical Bayes estimators proceeds as follows:

• Idea: Use the observed data and estimate the parameters of the Gamma-
distribution.

• Then use these parameters and calculate the posterior expectation of the
relative risk estimate for the i − th area.

• θEB
i = E(θi|oi, Ei, α̂, ν̂) = oi+ν̂

Ei+α̂
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Properties of empirical Bayes estimators

• For ”large population” areas the θEB
i will be close to the crude SMR’s

• For ”small population” areas the θEB
i will ”shrink” to the overall mean.

• This procedure is a ”borrowed strength” approach. Information is taken
from the distribution of the θi
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Results for the leukaemia data

DismapWin gives the following results:

Parameter estimates of Gamma-Distribution:

alpha= 1011.77472 nu= 1001.52246

Heterogeneity variance tau^2 = 0.00101

Please note that the heterogeneity variance is given by τ̂ 2 = α̂
ν̂2
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Figure 4: Map based on Gamma empirical Bayes estimates: Childhood
leukaemia GDR 1980-89
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A nonparametric distribution for the relative risk

distribution

Here several discrete levels of risk θj are assumed:

P =

[

θ1 . . . θk

p1 . . . pk

]

The mixture density is a weighted sum of Poisson densities for each area i:

f(Oi, P,Ej) =
k

∑

j=1

pjf(oi, θj, Ei), with

k
∑

j=1

pj = 1 and pj ≥ 0, j = 1, . . . , k
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Parameters estimation

Please note that the model consists of the following parameters:

• The number of components k

• The k unknown relative risks θ1, . . . , θk

• The k − 1 unknown mixing weights p1, . . . , pk−1

For finding the maximum likelihood estimates there are no closed form
solutions available, iterative solutions are available.
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Parameter estimation

Parameter estimation may be done as follows:

• Define a grid of possible subpopulation means

• Identify grid points with positive support

• Calculate a refined solution using a different algorithm
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DismapWin: Results for the leukaemia data

weight 0.00000 parameter 0.00000

weight 0.00159 parameter 0.18571

weight 0.00000 parameter 0.37143

weight 0.00000 parameter 0.55714

weight 0.00000 parameter 0.74286

weight 0.70388 parameter 0.92857

weight 0.29453 parameter 1.11429

weight 0.00000 parameter 1.30000

.....

weight 0.00000 parameter 2.60000

log-likelihood at iterate=-458.07010
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Results continued

Refined solution with fixed support size:

weight= 0.00817 parameter= 0.16954

weight= 0.70481 parameter= 0.99439

weight= 0.28702 parameter= 0.99439

Heterogeneity variance tau^2 = 0.00551

log-likelihood at iterate=-457.38644
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Results III

Fixed support size solution:

weight= 1.00000 parameter= 0.98962

Heterogeneity variance tau^2 = 0.00000

log-likelihood at iterate=-457.43839
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The heterogeneity variance for the semiparametric model

Please note that the heterogeneity variance is given by

τ2 =
k

∑

j=1

pj(θj − λ̄)2

λ̄ =
k

∑

j=1

pjλj
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Classification of the individual area

The individual area may be classified using Bayes’ theorem:

Pr(Zij = 1|Oi, P̂ , Ei) =
p̂jf(oi, θ̂j, Ei)
k
∑

l=1

p̂lf(oi, θ̂l, Ei)

The i-th area is then assigned to that subpopulation j for which it has
the highest posterior probability of belonging. Zij indicates component
membership.
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The empirical Bayes relative risk estimate

Taking expectations gives the empirical Bayes estimate of the relative
risk θi.

ˆSMRi = E(θi|Oi, P̂ , Ei) =

k
∑

j=1

p̂jf(oi, θ̂j, Ei)θ̂j

k
∑

l=1

p̂lf(oi, θ̂l, Ei)
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Figure 5: Map based on mixture model classification: Childhood leukaemia
GDR 1980-89

36



Disease mapping

Evaluation of the leukaemia data

There was public concern whether there is an excess of childhood
leukaemia in the vicinity of the nuclear installation Rossendorf close to
Dresden.

Table 1: Relative risk estimates for areas close to Rossendorf

Area Cases Expected Cases SMR EB MIX-EB Pr(O ≥ oi)

Dresden (City) 32 34.41 0.93 0.99 0.99 0.618
Dresden (area) 10 6.8 1.47 0.99 0.99 0.085
Sebnitz 9 3.53 2.55 0.99 0.99 0.004
Pirna 7 7.07 0.99 0.99 0.99 0.412
Bischofswerda 2 4.44 0.45 0.99 0.99 0.820
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Conclusion

Based on the spatial resolution available (Landkreise) no excess risk
could be identified!
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Full Bayesian models

A full Bayesian model has three levels:

• First level: Oi ∼ Poisson(θiEi)

• Second level: θi ∼ P (λ, τ2)

• Third level: The parameters λ, τ 2 have itself a distribution

Solutions can be obtained using Monte Carlo Markov Chain methods. A
software implementation is given by WinBugs and GeoBugs (Best and
Spiegelhalter, 1995, 2000)
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Random effects models in geographic epidemiology with

a spatial component

When dealing with spatial data two phenomena are sometimes
distinguished

• Unstructured heterogeneity: A random effects model

• Structured heterogeneity: A random effects model with spatial
dependency
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The notation for the spatial random effects model

Oi ∼ Poisson(µi)

log µi = β0 + log(Ei) + ui + vi

ui ∼ N(λ, σ2)

vi ∼ N(0, τ2
W

−1)

This is an intercept only Poisson regression model with random effects ui

and a spatial term vi. This type of model is mainly fitted with Bayesian
methods.
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Conclusions for Public Health practice

• When producing maps besides descriptive maps (Percentiles) smoothed
maps based on (empirical) Bayes methods are desirable

• There are a variety of models for (empirical) Bayesian mapping. Which
one should be used? Lawson et al (2000) found in a simulation study:

– Full Bayesian model: Overall best performance
– Gamma empirical Bayes model: Overall second best performance!!
– Mixture models: Sometimes oversmoothing, but useful for

classification

• More recommendations in the proceedings of the WHO workshop (1997)
on disease mapping and risk assessment
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Testing for Autocorrelation

We want to test the Null Hypothesis that all risk estimates are
independently distributed against the alternative that at least one pair
is correlated. For example for categorical data this gives:

• H0 : ∀P (Xi = xi, Xj = xj) = (P (Xi = xi)P (Xj = xj) vs

• H1 : ∃P (Xi = xi, Xj = xj) 6= (P (Xi = xi)P (Xj = xj)
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Definition of neighborhood

Two ares are said to be neighbors, if they have:

• One corner in common (Bishop’s case)

• One line in common (King’s case)

• One corner or one line in common (Queen’s case)
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Testing for autocorrelation: Moran’s I

Moran’s I is frequently used to test for autocorrelation in disease maps.
Calculation of Moran’s I requires the following steps:

• Define a nxn neighborhood matrix W with wij :

– wij = 1, i 6= j if areas Ri and Rj are adjacent
– wij = 0, otherwise

• Calculate the sum S0 =
∑n

i=1

∑n
j=1 wij

• Calculate I = n
S0

Pn
i=1

Pn
j=1 wij(xi−x̄)(xj−x̄)
Pn

i=1(xi−x̄)2
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Moran’s I continued

• Calculate E(I) and V ar(I)

• Reject H0 if |Zi| > Z1−α/2, ZI = I−E[I)√
V ar(I)

Here xi denote the SMR’s or rates of the individual regions and x̄ their
mean.
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Results for the leukaemia data

DismapWin gives the following output for Moran’s I:

Moran´s I

value of test-statistic=0.020720 p-value=0.279244

Additional information:

expectation=-0.004587 variance=0.001871 z-value= 0.585090
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