

Epidemiological studies – high frequency fields

Joachim Schüz

Institute of Cancer Epidemiology
Danish Cancer Society
Copenhagen

Study Settings

Incidence/Mortality "Ecological" Studies

Case-Control Studies

General concerns about ecological studies

- Ecological fallacy:
 No knowledge on exposure of individuals
- Clustering illusion: Cluster initiates study NOT cluster observed in study ,,Texas sharpshooter fallacy"

- Publication bias:
 Positive studies more likely to be published
- Bias from inadequate comparison population:
 Surveillance of disease better closer to putative hazard?
- > Hypothesis generating

Studies: USA San Francisco & Hawaii

- San Francisco:
 - Analysis of spatial data
 - 52 cases of childhood leukemia in study region
 - showing random pattern around broadcast transmitter
- Hawaii:
 - 12 childhood leukemia cases within 4 km of broadcast transmitter
 - SIR 2.09 (95% CI 1.08-3.65)
 - subsequent case-control analysis confirmed results

Study: North Sydney

[Hocking, MJA,1996 / McKenzie, Austr NZL J Publ Health 1998]

- Television antennas: 4 x 100 kW, 1 x 300 kW
- SIR Inner Circle vs. Outer Circle: 134 cases, 1.58 (95% CI 1.07-2.34)
- Increase restricted to Lane Cove
- Re-analysis: SIR Inner Circle vs. Outer Circle: 1.47 (95% CI 0.98-2.19)
- Incidence highest in 1972-78, before antennas went on 24 hrs transmission

Study: United Kingdom

[Dolk, Am J Epidemiol, 1997 / Cooper, Am J Epidemiol, 2001]

- TV transmitters 500-1000 kW (erp) FM radio transmitters > 250 kW (erp) and combinations
- 21 transmitters across UK
- Childhood leukemia:
 based on 10 cases 0-2 km circle
 SIR 1.12 (95% CI 0.61-2.61)
- Update Sutton Coldfield: based on 1 case, SIR 1.13 (0.03-6.27)

Study: Rome, Italy

[Michelozzi, Am J Epidemiol, 2002]

- Various short-wave and medium-wave transmitters with powers ranging from 5 to 600 kW
- Observed cases, SIRs (95% CI):

0-2 km 1 6.1 (0.4-27.5)

2-4 km 2 2.3 (0.4-7.2)

4-6 km 5 1.9 (0.7-4.0)

6-10 km 0 vs. 3.1 expected

- Sample measurements yielded quite high exposures at some nearby houses, e.g., > 2 V/m ~ 4 km distance
- More systematic measurements show considerable variation by distance, e.g. a factor of ~ 20 at 2-3 km

Study: Korea (Ecological)

- Exposed areas:
 - administrative units that include main AM radio transmitters
 - among 107 transmitters, 10 of > 100 kW were chosen
- Control areas:
 - four control areas matched to each exposed area
 - same population size, same province, no broadcast towers
 - at least 2 km distant from towers in exposed areas
- Investigation of childhood leukemia mortality rates
- SMR:
 - based on 11 cases
 - 2.29 ((95% CI 1.05-5.98)

Study: Korea (Case-Control) -1

- All cases with childhood leukemia diagnosed in Korea between 1993 and 1999, mixture of active search and use of Cancer Registry
- Controls: Hospital-based controls with respiratory illnesses
- Study numbers:
 1928 cases with leukemia
 3082 controls
 (but conditional analysis)

[Ha, Am J Epidemiol, 2007] [Ha, Am J Epidemiol, 2008 – Reply letter]

Study: Korea (Case-Control) -2

Institute of Cancer Epidemiology

• SIR within 0-2 km distance:

total leukemia: 36 cases, 2.15 (95% CI 1.00-4.67)

No significant p for trend

TABLE 1. Odds ratios and 95% confidence intervals of childhood leukemia according to the level of exposure to radio-frequency radiation from AM radio transmitters among children under the age of 15 years, South Korea, 1993–1999

	No. of controls	Lymphocytic leukemia			Myelocytic leukemia			All leukemia		
		No. of cases	Odds ratio*	95% confidence interval	No. of cases	Odds ratio*	95% confidence interval	No. of cases	Odds ratio*	95% confidence interval
Total radio-frequency radiation exposure (mV/m)†										
Quartile 1	513	514	1.00	Referent	177	1.00	Referent	737	1.00	Referent
Quartile 2	514	241	0.69	0.50, 0.96	110	0.74	0.46, 1.18	362	0.75	0.58, 0.97
Quartile 3	515	188	0.57	0.41, 0.78	122	0.96	0.62, 1.49	330	0.70	0.55, 0.90
Quartile 4	513	353	0.93	0.67, 1.29	100	0.55	0.33, 0.93	494	0.83	0.63, 1.08
Unknown	9	4	0.34	0.06, 1.87	1	0.28	0.02, 3.52	5	0.39	0.10, 1.54
$p_{ m trend}$ ‡				0.05			0.1			0.44
Peak radio-frequency radiation exposure (mV/m)§										
Quartile 1	513	360	1.00	Referent	130	1.00	Referent	525	1.00	Referent
Quartile 2	515	239	1.14	0.85, 1.54	105	0.67	0.43, 1.06	367	0.95	0.75, 1.20
Quartile 3	514	229	0.92	0.68, 1.24	92	0.76	0.49, 1.17	349	0.86	0.68, 1.09
Quartile 4	513	468	1.40	1.04, 1.88	182	0.63	0.41, 0.97	682	1.02	0.81, 1.29
Unknown	9	4	0.39	0.07, 2.26	1	0.29	0.02, 3.67	5	0.43	0.11, 1.75
$p_{ ext{trend}} \ddagger$				0.07			0.25			0.43

Study: Germany (Case-Control) -1

- All cases with childhood leukemia diagnosed between 1984 and 2003 based on the German Childhood Cancer Registry
- Controls: 3 population-based matched historical controls per case
- Study numbers:
 1959 cases with leukemia
 5848 controls
 (conditional analysis)

[Schmiedel, submitted – Validation study]

Study: Germany (Case-Control) -2

Definition of the study area:

- Exclusion of East Germany
- Identification of high power AM radio transmitters (> 500 kW emrp) and FM radio/TV transmitters (> 200 kW erp)
- Identification of all communities within the doubled expected 1 V/m circle (AM) / single ~0.3 V/m (FM/TV) circle around transmitters
- Exclusion of 5 AM transmitters in very sparsely populated areas
- 16 AM transmitters / 8 FM/TV transmitters > 900 communities & > 300 low power transmitters

Validation study

- Measurement survey in Baden-Württemberg
- Test of the prediction model with measured values
- Independent data source of case-control study

Summary

- Some but not all ecological studies indicate an increased risk of childhood leukemia in the vicinity of radio and TV broadcast towers
- More recent case-control studies show:
 - no increased risk with predicted total RF EMF exposure
 - predicted RF EMF exposure better exposure proxy than distance
- No other RF EMF sources are investigated
 - lack of exposure information
 - question of priority