Thermal sensation induced by MMW exposure

Y. Ugawa¹, A. Nishikata², K. Wake³, K. Sasaki³ and S. Watanabe³

¹Fukushima Medical University, ²Tokyo Institute of Technology, ³National Institute of Information and Communications Technology
Background

• The millimeter-wave usage have recently expanded in our daily life, such as automobile collision avoidance radar system, airport active scanner system, WiGig, and so on.

• There are not much enough data of the thermal sensation induced by the millimeter-wave EMF exposure.

• The safety parameters (level, averaged area, and so on) differ significantly among the guidelines.
Purpose

To investigate the threshold of thermal sensation induced by millimeter waves in Japanese people.

✓ Frequency
✓ Exposed area
✓ Exposed duration
✓ Age
✓ Gender
Methods

• Method of constant stimuli (MoCS)

• Stimulus (millimeter wave EMF) is exposed to the palm more than 20 times.

• He/she answers whether he/she feels or not at each trial.

• The incident power density evoking thermal sensation at 50% probability is estimated by maximum likelihood method in each subject. It is defined as the threshold.

Example of results (MoCS)
Experiment at 60 GHz

- **Frequency**: 60 GHz
- **Exposed area**: 35, 57, 199 mm² (50% of total radiation power flowing through)
- **Exposed duration**: 10, 30, 60 sec
- **Method of constant stimuli**
Dependence on exposed area (60 GHz)

- Threshold power density [mW/cm²]
- Exposed area [mm²]

- 10sec
- 30sec
- 60sec
Dependence on exposed duration (60 GHz)

![Graph showing dependence on exposed duration (60 GHz)]
Experiment at 95 GHz

- Frequency: 95 GHz
- Exposed area: 15, 52, 202 mm²
 (50 % of total radiation power flowing through)
- Exposed duration: 10, 30, 60 sec
- Method of constant stimuli
Dependence on exposed area (95 GHz)

Threshold power density [mW/cm²] vs. Exposed area [mm²]

- 10 sec
- 30 sec
- 60 sec
Dependence on exposed duration (95 GHz)

Threshold power density [mW/cm²]

Exposed duration [sec]

- 15 mm²
- 52 mm²
- 202 mm²
Dependence on exposed area

Threshold incident power density [mW/cm²] vs. Exposure area [cm²]

- This study, palm
- Back
- Ugawa et al (60 GHz, 10sec)
- Ugawa et al (95 GHz, 10sec)
- Blick et al (35GHz, 10sec)
- Blick et al (95 GHz, 10sec)
Dependence on frequency

![Graph showing dependence on frequency with data points from various studies.

- **Ugawa et al (1.99-2.02 cm², 10 sec)**
- **Ugawa et al (0.52-0.57 cm², 10 sec)**
- **Ugawa et al (0.15-0.35 cm², 10 sec)**
- **Blick et al (327 cm², 10 sec)**
- **Walter (12.56 cm², 3 sec, Pain)**

The graph plots threshold incident power density (mW/cm²) against frequency (GHz). The data points indicate a decrease in power density as frequency increases, with variations based on different study parameters.
Conclusions

The thermal sensation threshold induced by MM wave EMF was affected by both area and duration of MM wave exposure, in both 60 and 95 GHz exposure experiments.

The larger area and long duration of exposure made the threshold smaller, but it seems to be almost saturated by 200 mm² area, 30 seconds duration exposure practically.

We are now continue to study the age and gender influence on this threshold in Japanese people.