THE ICNIRP PERSPECTIVE OF NIR HEALTH RISKS:
FACTS, UNCERTAINTIES,
PUBLIC PERCEPTION AND NEED FOR ACTION

Paolo Vecchia
National Institute of Health, Rome, Italy
Chairman of ICNIRP
The International Commission on Non Ionizing Radiation Protection is an independent scientific organization that:

• Provides advice on the health hazards of non-ionizing radiation

• Develops international guidelines on limiting exposure to non-ionizing radiation

• Provides science-based guidance and recommendations on protection from non-ionizing radiation exposure
ICNIRP Statement

GENERAL APPROACH TO PROTECTION AGAINST NON-IONIZING RADIATION

www.icnirp.org

Paolo Vecchia, National Institute of Health, Rome, Italy
• Acute health effects exist that have been clearly established
• Acute effects occur above given exposure thresholds
• The evidence for health effects below the standards is very low
• The relevance for health of biological effects identified below the standards is unclear
• Long-term effects cannot form the basis for exposure standards
ICNIRP’s advice, and in particular guidelines, is intended to provide protection:

• In all frequency ranges
• For all categories of the population
• Against all established health effects
<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Hz</td>
<td>Static fields</td>
</tr>
<tr>
<td>>0 Hz – 100 kHz</td>
<td>Extremely Low Frequency (ELF) fields</td>
</tr>
<tr>
<td>100 kHz – 300 GHz</td>
<td>Radiofrequency (RF) fields</td>
</tr>
<tr>
<td>1 mm (300 GHz) – 760 nm</td>
<td>Infrared radiation</td>
</tr>
<tr>
<td>780 nm – 380 nm</td>
<td>Visible light</td>
</tr>
<tr>
<td>380 nm – 100 nm</td>
<td>Ultraviolet radiation</td>
</tr>
<tr>
<td>Source</td>
<td>Frequency Limit</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>WHO 2007 (EHC 238)</td>
<td>up to 100 kHz</td>
</tr>
<tr>
<td>ICNIRP 2009 (Draft)</td>
<td>up to 100 kHz</td>
</tr>
<tr>
<td>IEEE/ICES 2002</td>
<td>up to 3 kHz (not explicitly defined)</td>
</tr>
<tr>
<td>IARC 2002</td>
<td>up to 3 kHz (reference to IEEE/ICES)</td>
</tr>
<tr>
<td>OPECST (France) 2009</td>
<td>up to 300 Hz</td>
</tr>
</tbody>
</table>

Paolo Vecchia, National Institute of Health, Rome, Italy
INTERMEDIATE FREQUENCIES

Evaluation and Communication of Scientific Evidence and Uncertainty Towards a Consistent Terminology in Non-ionizing Radiation
Salzburg (Austria), 23-24 November 2009

• COST 244bis 1998 (Workshop Paris) 1 kHz – 3 MHz
• ICNIRP 1999 (Workshop Maastricht) 300 Hz – 10 MHz

Should the term intermediate frequencies formally (and univocally) adopted, or definitely abandoned?

Frequency range cutoffs multiple of 3 or multiples of 10?

Paolo Vecchia, National Institute of Health, Rome, Italy
Different groups in a population may have differences in their ability to tolerate a particular NIR exposure. Children, the elderly, and some chronically ill people might have a lower tolerance for one or more forms of NIR exposure than the rest of the population.

(ICNIRP 2002)

The meaning of *children* may be different across studies and disciplines, and between scientists and the public.
Guidelines are mainly based on established adverse health effects

A *biological effect* occurs when exposure to electromagnetic waves causes some noticeable or detectable physiological change in a biological system. An *adverse health effect* occurs when the biological effect is outside the normal range for the body to compensate, and thus leads to some detrimental health condition. *(WHO 1998)*

Annoyance and discomfort, if prolonged and/or repeated, can affect the well-being, and therefore health, as defined by the WHO Constitution.

Shall annoyance and discomfort be a basis for exposure limits?
In common language, the term risk may indicate either:

• The very **possibility** that an adverse health effect exists, or

• A combination of the **credibility** of the effect and its possible **health impact**

Within the public and the media, confusion is frequently made, especially when the risk is labeled as **“high”** or **“low”** (high/low likelihood or high/low impact)?

Within the scientific community, criteria and terminologies have been developed for the **credibility** of risks, and for the assessment of scientific evidence.
Group 1
The agent is **carcinogenic** to humans

Group 2A
The agent is **probably carcinogenic** to humans

Group 2B
The agent is **possibly carcinogenic** to humans

Group 3
The agent is **not classifiable** as to its carcinogenicity to humans

Group 4
The agent is **probably not carcinogenic** to humans
Sufficient evidence:
A causal relationship has been established between exposure and effect

Limited evidence:
A causal interpretation is considered to be credible, but chance, bias or confounding could not be ruled out with reasonable confidence.

Inadequate evidence:
The available studies are of insufficient quality, consistency or statistical power to permit a conclusion regarding the presence or absence of a causal association

Evidence suggesting lack of effects:
There are several adequate studies covering the full range of levels of exposure, which are mutually consistent in not showing a positive association

What in the case of strong prevalence, but not total consistency, of negative studies?
EHC 238 - Chapter 6
Neuroendocrine system

Draft report
Overall, these data do not indicate that ELF electric and/or magnetic fields affect the neuroendocrine system in a way that would have an adverse impact on human health and the evidence is thus considered very weak.

Final text
Overall, these data do not indicate that ELF electric and/or magnetic fields affect the neuroendocrine system in a way that would have an adverse impact on human health and the evidence is thus considered inadequate.

The draft chapter included 100 references
Uncertainties **unavoidably** affect any scientific evaluation.

In risk assessment, uncertainties may exist about:

- The very existence of a biological effect
- The relevance of a biological effect for human health
- The exposure/effect relationship (including thresholds, if any)
- The global health impact
Uncertainties on the quantitative features of the exposure/response relationships are accounted for by the introduction of reduction factors.

The choice of reduction factors is to a large extent a matter of judgment.

A balance is needed between conservative approach and practicality of standards.
Reference levels are derived by basic restrictions making use of the best available dosimetry, and conservative assumptions on the exposure conditions.

The choice of reference levels also depends on practicality (e.g. with regard to the analytical relations chosen to account for the frequency dependence of the thresholds for effects).
RMS E-values required to produce a whole-body-averaged SAR of 0.08 W/kg in child models
Dimbylow & Bolch 2007

Paolo Vecchia, National Institute of Health, Rome, Italy
[...] calculations are for optimal coupling conditions of a vertically polarized electric field applied to a standing subject. The SAR values can be averaged over a 6 min period and it is unlikely that you could get small children to stand straight for this length of time.

(Dimbylow and Bolch 2007)

at the recommended reference level the induced SARs could be up to 40% higher than the current basic restriction under worst-case conditions. However, this is negligible compared with the large reduction factor of 50 (5,000%) for the general public.

(ICNIRP 2009)
THE ICNIRP GUIDELINES: PRESENT SITUATION

Static magnetic fields
Revised 2009

ELF electric and magnetic fields
Draft (Publication expected 2010)

RF electromagnetic fields
Confirmed (Revision expected 2012)

Broadband optical radiation
In preparation (Expected 2010)

Paolo Vecchia, National Institute of Health, Rome, Italy
WHY TO REVISE A STANDARD?

- New scientific data (new effects, change of thresholds, refinement of dosimetry)
- New technologies (revision of reduction factors, possibility of relaxation)
- Outdated rationale
• ICNIRP guidelines have been recently revised, or are being revised
• A balance is needed between stability of standards over the time and update to most recent research
• Refinements and clarifications may be provided as needed, also with regard to terminology
• ICNIRP welcomes any suggestion and comment to its documents and scientific position